

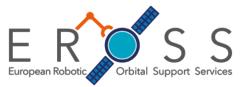
Outline

General Presentation of EROSS

- Context
- Objectives
- Outcomes

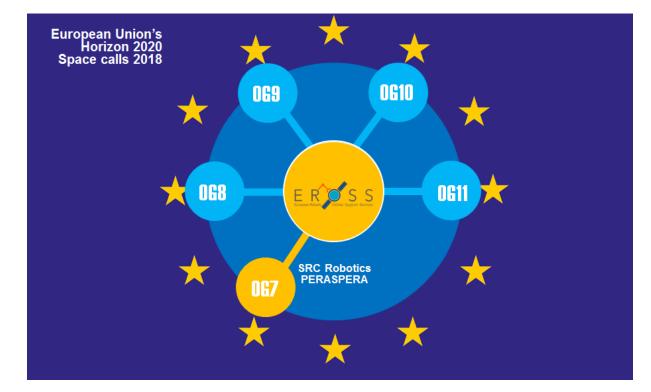
EROSS Concept

- Scenario
- Design


EROSS building blocks

- Software and Hardware
- Previous OGs building blocks

Conclusion & Q&A


EROSS General presentation

EROSS objective is

- to demonstrate the European solutions for the Servicers and the Serviced LEO/GEO satellites
- to enable a large range of efficient and safe orbital support services
- to assess and demonstrate the capability of the on-orbit servicing spacecraft (chaser) to perform
 - rendezvous
 - capturing
 - grasping
 - berthing
 - manipulation of a collaborative client satellite (target) provisioned for servicing operations such as refuelling and payload transfer/replacement

EROSS is also the product maintainer of previous building blocks OG4 I3DS: Integrated 3D sensors.

EROSS Consortium

10 complementary partners from 8 European Countries

- 3 large industrials: THALES ALENIA SPACE, GMV, SENER
- I large company: PIAP SPACE
- 1 academics: NTUA
- 2 SMEs: SAS & SODERN

2 companies as third parties:

MDA and QINETIQ Space

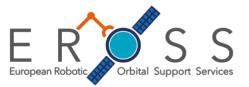
EROSS AIM

Context: Orbital Servicing for Life Extension

- **Lifetime & Cost :** expensive systems looking for profitability
- Green Space : reduce space debris impact
- **Modular Systems** : in-orbit assembly of large structures
- Samples return : scientific challenges with RDV & Capture

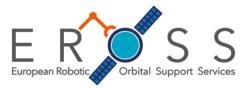
Technologies Trends

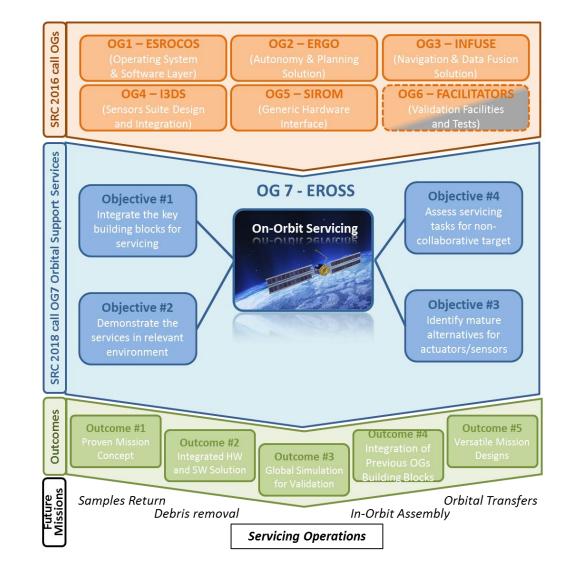
- Genericity : standard platforms / elements for modularity
- Interfaces standardization : CBM, IBDM, SIROM...
- **Processors capability :** new generations of processors to embed on board guidance or image processing algorithm
- Guidance, Navigation & Control (GNC) : advanced functions for rendezvous and relative navigation beyond traditional Attitude & Orbit Control System (AOCS)
- Sensors/Actuators compactness : for handling and storage on the servicer platform


□ EROSS Use-Case

- Servicer equipped with a "robotic servicing payload"
- Target designed to be serviced
- RDV & Capture of the cooperative (=stable) target
- Servicing tasks once captured

EROSS General presentation

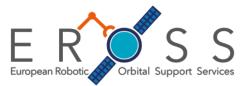


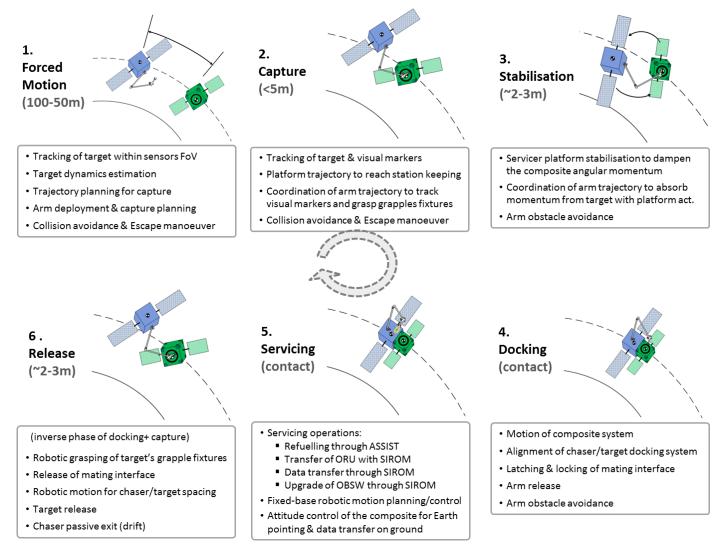

□The European Robotic Orbital Support Services (EROSS) study will develop and demonstrate key robotic building blocks for the benefits of many future space missions:

- LEO satellites / constellations
- GEO satellites
- Interplanetary science
- Space station operations
- Servicers/SpaceStart

EROSS Objectives & Outcomes

EROSS General presentation




□ Through EROSS, the complete robotic chain will gain in maturity:

- The robotic computing system
- The robotic sensors
- The robotic actuators
- The GNC algorithmic chain
 - Relative & Absolute Navigation
 - Guidance
 - Long-range guidance
 - Inspection
 - Proximity operations
 - Control
 - Local & composite control
 - Multi-DoF & flexible structures
- The development framework, EGSE & test labs

EROSS Mission scenario

Servicing mission and operational lifecycle for EROSS

Mission scenario baseline for validation

Mission Design : System-level process (V cycle)

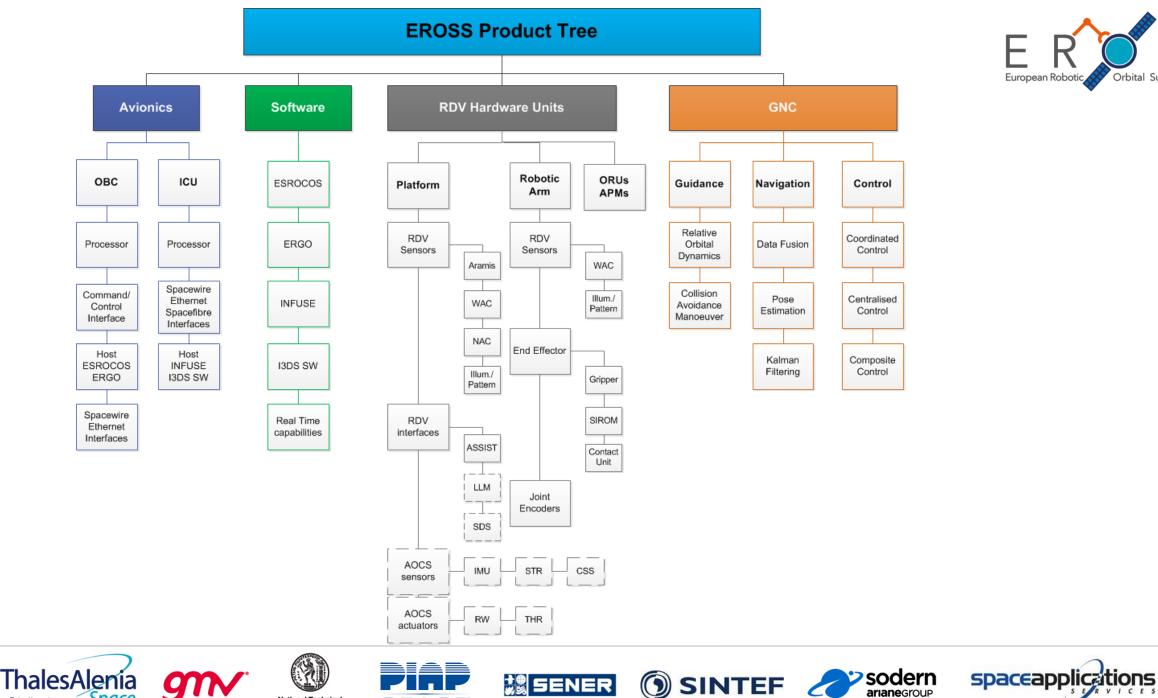
- Mission Goal : Refuelling, Software update and payload exchange
- Mission Profile : Final rendezvous and capture(forced motion)
- Vehicle Architecture : System design of critical functions & related subsystems for both <u>vehicleS</u> (chaser & target for a collaborative

rendezvous)

 Development of system design and simulator for both the real mission and the demonstration

Semi-cooperative servicing

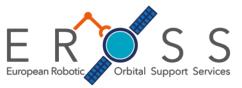
-- Validation Baseline --


MISSION : RdV & Capture of a known and designed target
CHASER DESIGN : coordinated platform & arm motion
ARM : Medium-size robotic arm (reach ~4-5m)
INTERFACES : Berthing by gripper + Docking ASSIST interface (Male)
TARGET DESIGN : for capture with visual markers, & for servicing with refuelling interface => Passive target : rotation and translational drift
INTERFACES : Launch Adapter Ring (or grapple fixture) + ASSIST (Female)

MODULE : 1x module with SIROM interface

SINTEF

SPACE


National Technical

University of Athens

INNOVATING SOLUTION

company Space

a Thales / Leonardo company

11

EROSS re-use of the previous building blocks

- Reuse of OG1-ESROCOS with its specific tools: for design, deployment and validation of the Robot Control Operating System (RCOS) and with RCOS Development Environment (RDEV);
- Reuse of OG2-ERGO through an architecture with two main components: an executive layer (ERGO Agent) for implementing the control loops with a functional layer to perform the actions for goals setup & observations requests;
- Reuse of OG3-INFUSE for the navigation solution: by using the data products developed for target detection and 3D pose estimation;

- Reuse of OG4-I3DS for the relative sensors suite: by integrating the relative 3D sensors, their hardware interface and their software solution on the OSS platform;
- Reuse of OG5-SIROM for the unit interfaces: the multi-purpose interface developed by OG5 is reused to ensure the mechanical, data and power links between the ORU elements, and between one ORU and the platform.

Conclusion

2023

EROSS leverages on many developments to enable a challenging project

- Demonstrate cooperative servicing in representative environment
 - Berthing & Docking & Latching 0
 - Refueling 0
 - Payload exchange 0
- Assess non-cooperative servicing

Identify mature solutions for actuators/sensors to answer to Demonstra variability in robotics designs per mission scenarios

• Robotic mission designs (LEO/GEO, interplanetary, spacestart) EROSS activity, other R&T **Refueling building blocks (leveraging on ASSIST)** GNC & processing building blocks (leveraging on OG4 & OG3) Robotics actuators/sensors building blocks (leveraging on OG4) Other actuators: arms, grippers, SIROM (leveraging on OG5) Development Framework, EGSE/MGSE & test facilities (leveraging on OG1, OG2 & OG6) Lab demonstration (leveraging on OG4 & OG6)

2022

2021

- Synchronize with other OGs
- Be on-time with business & in-orbit demonstration opportunities

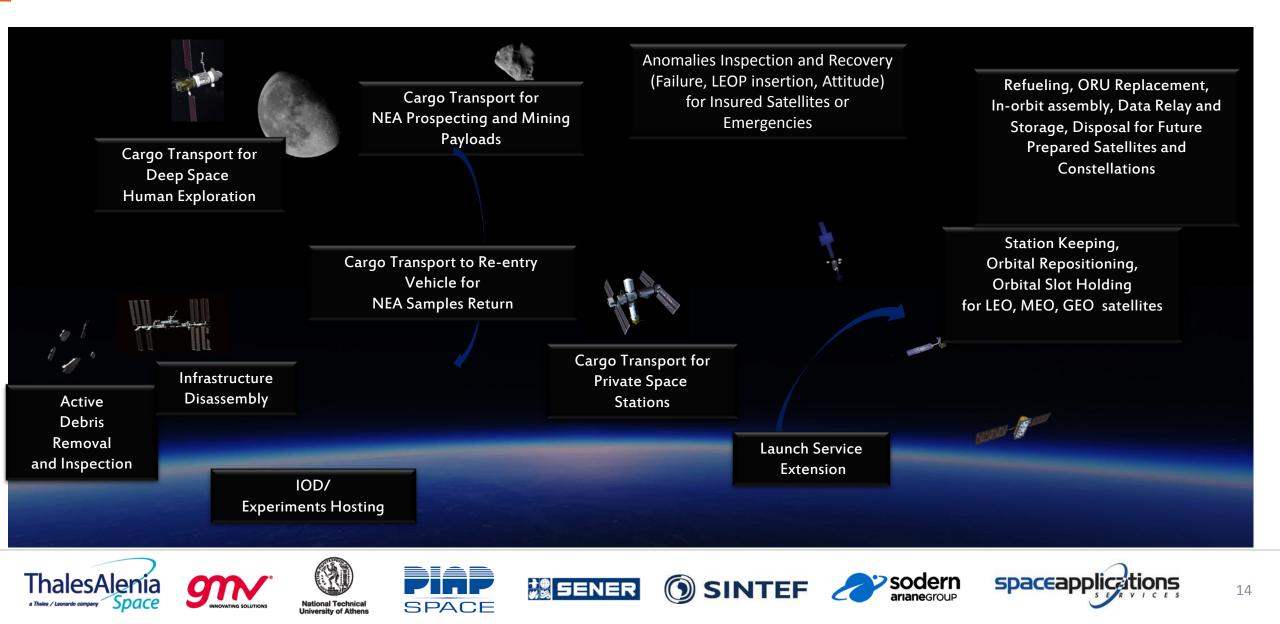
2019

System

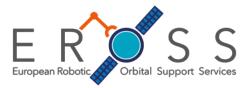
Design

Robotics

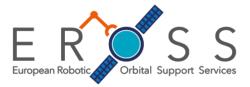
building


blocks

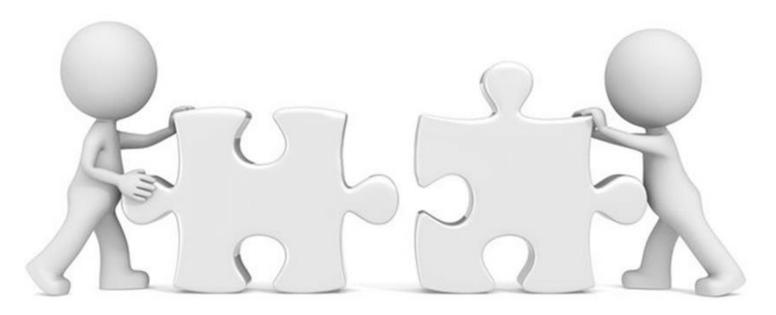
tion


2020

Future Servicers potential Market enabled by



Any questions ?



Thank you !

